
 Revision: 2.0.1
 2021-05-05

CC Linux
Programmer’s Guide

 www.crosscontrol.com

CC Linux Revision: 2.0.1
Programmer’s Guide 2021-05-05

www.crosscontrol.com 2

Contents
1. Introduction .. 4

1.1. Convention and defines ... 4
1.2. References .. 4

2. Interfaces ... 5
2.1. Standard libraries ... 5
2.2. CCAux library ... 5
2.3. CCAux API calling convention ... 7
2.4. Telematics API .. 7

3. Board Support Package.. 8
3.1. Downloading and installing the BSP .. 8
3.2. BSP structure ... 8
3.3. Using the BSP ... 11

4. Software Development Kit .. 14
4.1. Downloading and installing the SDK ... 14
4.2. Using the SDK .. 14
4.3. Debugging remotely ... 15

5. Special considerations .. 17
5.1. Ethernet, setting a static IP-address ... 17
5.2. CAN ... 17
5.3. Analog video .. 19
5.4. Graphics, Qt (without Weston) ... 20
5.5. Graphics, Weston ... 21
5.6. Serial Number Broadcast interface ... 21
5.7. Polarity of PWM outputs .. 21
5.8. Suspend ... 22

6. Build Examples ... 23
6.1. Building applications with the SDK ... 23

7. Working with Systemd ... 26
7.1. Creating services with dependencies .. 26
7.2. Viewing dependencies with systemctl list-dependencies ... 27
7.3. Adding systemd .devices .. 29

Technical support .. 31
Trademarks and terms of use ... 32

CC Linux Revision: 2.0.1
Programmer’s Guide 2021-05-05

www.crosscontrol.com 3

Revision history
Revision Date Comments

1.4.0 2018-11-22
Released.
Document compatible with devices running
CC Linux 1.4.x.x

1.4.1 2019-08-26

Added chapter on peripherals turned off
during suspend.
Document compatible with devices running
CC Linux 1.4.x.x

1.4.2 2019-12-11
Added CCpilot X900 related information
Document compatible with devices running
CC Linux 1.4.x.x

1.5.0 2020-08-28 Document compatible with devices running
CC Linux 1.5.x.x

2.0.1 2021-03-18 Document compatible with devices running
CC Linux 2.0.x.x

CC Linux Revision: 2.0.1
Programmer’s Guide 2021-05-05

www.crosscontrol.com 4

1. Introduction
This document contains reference information describing application development and APIs used
when developing applications for the CCpilot products supported in the CC Linux platform.
Additionally, this document contains information on how to build a custom Linux operating system
for your device based on the CC Linux reference system.

Several functionalities are available using the operating system or standard APIs. These may be
briefly mentioned but are not described in detail within this documentation.

A good prior understanding of Linux programming is needed to fully benefit from this
documentation. It is also recommended to read the CC Linux - Software Guide prior to reading this
document.

1.1. Convention and defines
This document covers all devices included in the CC Linux platform. For the sake of example, the
CCpilot VS device is sometimes used throughout this document. Any significant device deviations
will be stated. When the <xx> is used, it should be replaced with the proper device name (VS, for
instance).

The observe symbol is used to highlight information in this document, such as differences between
product models.

The exclamation symbol is used to highlight important information.

Text formats used in this document:

Format Use
Italics Paths, filenames, definitions.
Bolded Command names and important information

1.2. References
For further information on the device software and the available APIs see the following references.

[1] CC Linux – Software Guide
[2] CCpilot VI - Technical Manual
[3] CCpilot VS - Technical Manual
[4] CCpilot V700 – Technical Manual
[5] CCAux API documentation
[6] Telematics API documentation
[7] Yocto Project Development Tasks Manual:

www.yoctoproject.org/docs/2.7.2/dev-manual/dev-manual.html
[8] Yocto Project Application Development and the Extensible Software Development Kit

(eSDK) manual:
https://www.yoctoproject.org/docs/2.7.2/sdk-manual/sdk-manual.html

http://www.yoctoproject.org/docs/2.7.2/dev-manual/dev-manual.html
https://www.yoctoproject.org/docs/2.7.2/sdk-manual/sdk-manual.html

CC Linux Revision: 2.0.1
Programmer’s Guide 2021-05-05

www.crosscontrol.com 5

2. Interfaces
This section covers basic information on how to access the device hardware. Most of the hardware
is accessed using the default Linux interfaces but some specific interfaces may require additional
functions to be accessed.

Table 1 lists the API used to access each interface. These interfaces can be grouped into two
categories; Standard operating system libraries (Std. API) and CCAux Library (CCAux API).

See also the operating system specific sections and additional documentation describing the software
API.

Table 1: APIs used for different interfaces in CCpilot devices
Functionality Std. API CCAux API Comment
CAN √ SocketCAN available through Linux.
Ethernet √ Standard Linux kernel drivers.
USB √ Standard Linux kernel drivers.
RS232 √ Standard Linux kernel drivers.
RS485 √ Standard Linux kernel drivers.
Digital video √ QtMultimedia, gstreamer1

Analog video in √ √ Video4Linux2 API, gstreamer, and QtMultimedia
can be used directly without CCAux API.

Digital output √
PWM output √
Configurable input √
Analog input √
Status indicator √
Backlight √
Ambient light sensor √
Buzzer √
Power management √

1On CCpilot VI the video stream needs to be rotated counter clockwise due to display orientation. This can be done by setting the
videoflip method to counterclockwise in the gstreamer pipeline.

Your device might not support all interfaces stated here. See the Product Leaflet or Technical
Manual of your device for a complete list of available interfaces.

2.1. Standard libraries
Most interfaces are accessed using standard libraries and access methods. Various access
methods are possible to be used depending on the development environment and additional
installed frameworks.

The standard libraries used for Linux are described in their respective documentation sources,
such as MAN pages.

2.2. CCAux library
The CCAux API gives access to several hardware specific interfaces. The API functions of this
library are documented in the CCAux API documentation.

Table 2 gives a brief introduction on the API’s found therein and their functions. Most API functions
can be used from the pre-installed CCSettingsConsole application as well.

CC Linux Revision: 2.0.1
Programmer’s Guide 2021-05-05

www.crosscontrol.com 6

Table 2: Short description of CCAux API contents and the supported devices

API Description
 Supported on device
VS VI X900 V700

About
Hardware information API
related to the hardware
configurations.

Ye
s Yes Yes Yes

Adc Read built in ADC voltage
information.

Ye
s Yes Yes Yes

AuxVersion Read firmware version
information.

Ye
s Yes Yes

Backlight

Control display backlight
settings and configure
automatic backlight
functionality.

Ye
s Yes Yes Yes

Battery Control battery related settings,
if a battery is connected. No No No No

Buzzer Control the built-in buzzer. Ye
s Yes Yes Yes

CanSetting Control CAN settings.1 Ye
s Yes Yes Yes

CfgIn Get/set current status of
configurable input signals.

Ye
s Yes No No

Config

Control internal and external
power up and power down
settings and time
configurations, including power
button and on/off signal
configurations.

Ye
s Yes Yes Yes

Diagnostic Get run time information about
the device.

Ye
s Yes Yes Yes

DigIO Get/set current status of Digital
Output signals.

Ye
s No No No

FirmwareUpd
ate

Update/verify System
Supervisor (SS) and other
firmware.2

Ye
s Yes Yes Yes

FrontLED Override the default LED
behaviour.

Ye
s 3 Yes4 Yes Yes

LightSensor
Read the light sensor values
and get raw and/or calculated
values.

Ye
s No Yes Yes

Power
Read power status and control
functions for advanced shut
down behaviour.

Ye
s Yes Yes Yes

PWMOut Get/set current status and
settings of PWM Output signals. No Yes No No

SoftKey
Get press status of buttons.
Get/set button backlight
settings.

No Yes No No

Telematics
Control power to the
telematics board, as well as
basic initialization functions.

No
5 No5 No5 No

TouchScreen

Change the touch screen
profile between mouse or
touch profile and other touch
screen related settings.

No No No No

Video
Control the analog video
streams in terms of channel,
size, scaling etc.

Ye
s No No No

CC Linux Revision: 2.0.1
Programmer’s Guide 2021-05-05

www.crosscontrol.com 7

1 Most settings for CAN usage are available over the SocketCAN interface instead.
2 Consider careful usage for these functions, erroneous usage can result in a non-functional device.
3 CCpilot VS does not have a front LED, so this API controls the button backlight LED instead.
4 CCpilot VI does not have a front LED, so this API controls the button backlight LEDs instead.
Additionally, the FrontLED class is deprecated on VI as it handles RGB LEDs which VI button backlight does not
have. Calling this class on VI will result in a grey-scaled mapping in order to keep backwards compatibility. For
new developments, the SoftKey class should be used instead.
5 See the separate Telematics API instead.

2.3. CCAux API calling convention
The standard way to call CCAux API functions is shown below. Please adhere to this calling
convention. Example code snippets for each function are available in the CCAux API
documentation. Moreover, chapter 6.1 gives an example on how to call the CCAux API in order to
set the front LED color.

/* Usage in CCAux API 2.x */
$ include ”Module.h”

MODULEHANDLE pModule = CrossControl::GetModule();

eErr err = Module_function_1(pModule, arg, …);

Module_release(pModule);

2.4. Telematics API
Some CCpilot devices support the external add-on telematics device CrossLink AI. The interfaces
provided by this board are not accessed via the CCAux API, but through the separate Telematics
API instead. This API is included in both the BSP and SDK and its functions are called in the same
convention as in CCAux API. Please refer to the Telematics API reference documentation for more
information about the functions available.

CCPilot V700, CCpilot VI and CCPilot X900 do not support the telematics API and cannot be used
together with CrossLink AI.

CC Linux Revision: 2.0.1
Programmer’s Guide 2021-05-05

www.crosscontrol.com 8

3. Board Support Package
In order to create custom Linux images for CCpilot devices, a board support package (BSP) has
been created. The BSP is a Yocto-project build system that produces complete Linux images for
the CCpilot devices. It also includes the necessary application and driver code, as well as example
or template code that may serve as a basis for further application and driver development.

The open-source Yocto system has built-in package support with many thousands of maintained
packages available, while also providing a set of standard tools and build guidelines. The BSP
adds necessary drivers and applications required for the CCpilot board images. For more
information regarding the Yocto project, please refer to the Yocto Project Development Tasks
Manual [7].

3.1. Downloading and installing the BSP
The BSP package comes in the form of a gzipped tar archive which can be acquired from the
CrossControl support site. The BSP was created on an x86-64 machine running Ubuntu 18.04.5
LTS and must be unpacked to a Linux host machine/build server. A large amount of disk space (at
least several hundred gigabytes) and memory is required for the Yocto system, as the directory
structure tends to grow quickly in size. Please refer to the Yocto Project Development Tasks
Manual [7]for information about required dependencies.

3.2. BSP structure
This chapter will go through CrossControl specific parts of the BSP structure. For other third party
components (OpenEmbedded, Yocto, etc.), please refer to their respective reference
documentation.

Initially, the BSP base directory will only contain CrossControl directories. All other required third
party tools are provided as hash-files which can be downloaded from remote repositories upon first
build. The following subsections will describe these initial directories.

Internet connection is required to build a BSP.

While most components in the BSP are released under various open source licenses, others are of
proprietary nature and protected under the CrossControl Software License. Be aware of which
license applies and please comply with the license terms.

VS is the internal CrossControl code name for the CCpilot VS architecture/platform; therefore the
BSP contains references to the VS platform such as “PLATFORM_VS”. The same applies for other
CCpilot devices:

Device Code name

CCpilot VS 12” vs
CCpilot Vi 2nd gen vi2
CCpilot X900 xm9
CCpilot V700 v700

Additionally, CrossControl specific components are named “cc”, such as “meta-cc” and “recipes-
cc”.

CC Linux Revision: 2.0.1
Programmer’s Guide 2021-05-05

www.crosscontrol.com 9

3.2.1. apps
The apps directory contains the source code to CrossControl-developed libraries and applications
such as CCAux API library, CCAux daemon, CCSettingsConsole, Telematic API, etc.

3.2.2. drivers
The drivers directory contains the source code to the following CrossControl-developed drivers:

ss
Handles communications between the System Supervisor (SS) and the main processor (MP, i.e.
the Linux system) over the MP-SS SPI bus. This driver is required for the CCAux API to work.

<xx>-io
Is used to set the direction of the internal UART, in order to support either bootloader output to the
update board or to the serial port of the SS.

3.2.3. meta-3rd-party
Table 3: Content of the subdirectories in the meta-3rd-party directory in the BSP.
Directory Content

meta-kontron
This is the base (meta) layer that contains various 3-rd party and Kontron
software which is common for all x86 boards produced by Kontron Europe.

3.2.4. meta-cc
The meta-cc directory contains the Yocto layer with all CrossControl developed board-specific
recipes. See Table 4 for more details of the subdirectories.

Table 4: Content of the subdirectories in the meta-cc directory in the BSP.
Directory Content

conf

meta-cc layer configuration files for the <xx> machines. The machines are
based on more general machines. For instance, the ‘vs’ machine is based
on the ‘mx6q’ machine, which in turn is based on the ‘mx6’ machine in the
meta-freescale layer.

recipes-bsp Contains the u-boot specific patches which adapt the default u-boot
configuration for the device’s chipset.

recipes-cc Contains recipes for CrossControl developed libraries and applications.
These have the source code stored locally in the apps/ directory.

recipes-connectivity Contains recipes for Ethernet configuration.

recipes-core

• Image recipes (both for the main and rescue system) for all supported
devices; these are used to produce the reference CC Linux image. This is
a good starting place to add or remove features from the image.

• Psplash recipe, used to create a bootsplash image during the time in
which the Linux system loads

• Initscript recipes

recipes-devtools A recipe for input utilities, which are used to enable the touch panel driver
for devices with a touch panel, such as CCpilot VS.

recipes-kernel

• Kernel recipes; board-specific kernel patches, device tree, kernel
configuration files

Recipes for the CrossControl developed drivers in the drivers directory

CC Linux Revision: 2.0.1
Programmer’s Guide 2021-05-05

www.crosscontrol.com 10

recipes-multimedia
• Contains recipes for adding mp4 video format support and Qt

integration to gstreamer.

3.2.5. meta-freescale-append
Append and configuration files for meta-freescale Yocto layer. See Table 5 for more details of the
subdirectories.

Table 5: Content of the subdirectories in the meta-freescale-append directory in the BSP.
Directory Content
conf meta-freescale layer configuration files.
recipes-bsp Placeholder directory for bsp append files
recipes-fsl Placeholder directory for fsl append files
recipes-graphics Placeholder directory for graphics append files

3.2.6. meta-freescale-distro-append
Append and configuration files for meta-freescale-distro Yocto layer. See Table 6 for more details
of the subdirectories.

Table 6: Content of the subdirectories in the meta-freescale-distro-append directory in the BSP.
Directory Content
conf meta-freescale-distro layer configuration files.

3.2.7. meta-imx-append
Append and configuration files for meta-imx Yocto layer.

3.2.8. meta-openembedded-append
Append and configuration files for meta-openembedded Yocto layer.

3.2.9. meta-intel-append
Append and configuration files for meta-intel Yocto layer.

3.2.10. Poky-append
Append and configuration files for poky Yocto layer.

3.2.11. platform
The platform directory contains a directory for each of the CC Linux devices as well as one
common directory. These directories contain environment-setup scripts, extra Makefile rules to
build individual system components with bitbake, and the configuration files needed for configuring
the build system. The file local.conf can be modified to change the default Yocto download
directory etc. If you want to add a new layer to the Yocto build, it must be added to the
bblayers.conf file.

When building, the working directory will be located in platform/<xx>/ build.

CC Linux Revision: 2.0.1
Programmer’s Guide 2021-05-05

www.crosscontrol.com 11

3.2.12. tools
The tools directory contains scripts to be used for device OS update.
See the CC Linux – Software Guide for instructions on how to use them.

3.2.13. uuu-package
Contains necessary binaries and template files to use with flashing the processor with the NXP
provided uuu-tool.

3.2.14. binaries
All built images, update files, etc. are placed in the binaries directory which is created upon the first
build.

3.3. Using the BSP
The purpose of this chapter is not to give the reader a full description of the Yocto build system and
all its possibilities; but rather give useful tips on how to build Linux images and application binaries
from within the BSP.

3.3.1. Building Linux images
Out of the box, the BSP produces a CC Linux image containing a reference implementation. The
reference implementation is intended to be used as a basis for creating custom images.

The first time building the image can take several hours, depending on your host machine.
Subsequent builds will be quicker as Yocto reuses all unchanged components from
previous builds.

Depending on your host machine, you might need to edit the platform/<xx>/local.conf file. For
instance, the default download directory can be changed; and if you have limited disk space, there
is a setting for removing temporary files once builds are completed. However, removing temporary
files will slow down your build process.

In the BSP root directory there is a Makefile containing rules to make main and rescue images for
all CC Linux devices. For instance, to make the CCpilot V700 releaseimage, type

$ make v700-release-image

make will automatically source the environment scripts in the platform directory and invoke bitbake
to bake the image recipe in the meta-cc/recipes-core/images directory.

The resulting image is located in platform/<xx>.

To build your own custom Linux image, either edit the image recipe right away, or make a new
recipe and add a new rule for it to the Makefile. If choosing the latter, don’t forget to add a rule to
the platform/<xx>/Makefile as well.

See the CC Linux - Software Guide for instructions on how to program the images to the device.

3.3.2. Building applications
Provided there exists a recipe for the application, building with the BSP can be done in two ways.
The first method is the most straightforward whereas the second can be more convenient during
development as it is faster and more flexible.

CC Linux Revision: 2.0.1
Programmer’s Guide 2021-05-05

www.crosscontrol.com 12

First method:

1. Include the recipe for the application in the image recipe:

IMAGE_INSTALL += “applicationname”

2. Make the image as usual:

$ make <imagerule>

Second method:

1. Make sure you are in the platform/<xx> directory and source the environment script:

$ source oe-env

2. Use bitbake to build your application:

$ bitbake <applicationname>

Third method:

You may also use devtool to edit and modify the program developed. For details, see the Yocto
documentation on how to work with devtol.

A brief example is shown here.

1. Run devtool modify <recipename>. This will fetch the sources for the recipe
and unpack them to a workspace/sources/<recipename> directory and initialise it as
a git repository if it isn't already one. If you prefer you can specify your own path,
or if you already have your own existing source tree you can specify the path along
with the -n option to use that instead of unpacking a new one.

2. Make the changes you want to make to the source

3. Run a build to test your changes - you can bitbake <recipename> or build an
entire image incorporating the changes assuming a package produced by the recipe
is part of an image. There's no need to force anything - the build system will detect
changes to the source and recompile as necessary.

4. If you wish, test your changes on the target. There's a "devtool deploy-target"
command which will copy the files installed at do_install over to the target machine
assuming it has network access, and any dependencies are already present in the
image.

5. Repeat from step 2 as needed until you're happy with the results.

6. At this point you will almost certainly want to place your changes in the form of a
patch to be applied from the metadata - devtool provides help with this as well.
Commit your changes using "git commit" (as many or as few commits as you'd
like) and then run either:

CC Linux Revision: 2.0.1
Programmer’s Guide 2021-05-05

www.crosscontrol.com 13

o devtool update-recipe <recipename> to update the original recipe -
usually appropriate if it's your own recipe or you're submitting the changes
back to the upstream layer

o devtool update-recipe -a <layerpath> <recipename> to put your
changes in the form of a bbappend to be applied by a different layer. This is
usually the desired method if your changes are customisations rather than
bugfixes.

7. If you're finished working on the recipe, run devtool reset <recipename>.

All methods will put the resulting application binaries in platform/<xx>/build/tmp/work.

In the second method, additional bitbake commands can be invoked. For instance, one can use the
–c flag to recompile the application without re-fetching the source files.

CC Linux Revision: 2.0.1
Programmer’s Guide 2021-05-05

www.crosscontrol.com 14

4. Software Development Kit
This section is dedicated to useful tips and hints about how to use the Software Development Kit
(SDK) on a Linux development host machine for application development and debugging
purposes.

The SDK is based on the Yocto Project SDK. Refer to the Yocto Project Application Development
and the Extensible Software Development Kit (eSDK) [8] manual for additional information and tips.

On some platforms, a separate debug-sdk is available on request to debug system libraries.
Additionally, this can be built from the BSP. This option is not available for the Yukon and V700
platforms, please consult the Programmer’s manual for further instructions on debugging system
libraries.

4.1. Downloading and installing the SDK
The toolchain included in the SDK is an ARM GNU/Linux cross compiler based on the standard
GNU GCC compiler toolchain. Additionally, the SDK contains header and library files for CCAux
API and other peripherals. In order to download the SDK, visit the CrossControl support site. For
support on SDK issues, please contact CrossControl directly.

The SDK comes in the form of a self-extracting shell script. It contains precompiled binaries for
Linux host systems. There are two versions of the SDK; one for 32-bit i686 hosts and one for 64-bit
x86 hosts. To install the SDK, move the script to the host computer and run the following shell
command:

$ sh scriptname.sh -d <sdk install dir>

Omitting the -d flag will install the SDK to the default directory, /opt/cclinux/1.0.0.

Example output from installing the CCpilot VS SDK to /opt/sdk/:

$ sh CCLinux-SDK-toolchain-x86_64-CCpilot-VS-v1.4.1.0.sh -d /opt/sdk/
CCLinux Distribution SDK installer version 1.0.0
==
You are about to install the SDK to "/home/lisa/vs-sdk/sdkmapp". Proceed[Y/n]?
Y
Extracting SDK...................done
Setting it up...done
SDK has been successfully set up and is ready to be used.

4.2. Using the SDK
4.2.1. Starting a new session
Once installed, the SDK contains the sysroots directory with target and host system root file
systems, and an environment setup file; environment-setup-<XXXX> (file ending varies depending
on your platform). The environment setup file exports the correct $PATH and other important build
environment variables, such as $CC and $CFLAGS. (Read the file content to get an understanding
of the default settings).

This file needs to be sourced before using the SDK each time a new shell session is started:

$ source environment-setup-<XXXX>

CC Linux Revision: 2.0.1
Programmer’s Guide 2021-05-05

www.crosscontrol.com 15

Now the cross-compiler is ready to use.

4.2.2. Using correct development headers
The SDK is released containing binary images. This package contains libraries available at the unit
and all header files for utilizing them. The header files are located in:

<sdk-install-dir>/sysroots/<targetsysroot>/usr/include/

and the libraries are found in these two directories:

<sdk-install-dir>/sysroots/<targetsysroot>/lib/

<sdk-install-dir>/sysroots/<targetsysroot>/usr/lib/

These directories are automatically added to the search path when sourcing the environment setup
script and don’t need any special consideration.

If additional development files placed outside of the SDK installation directory are to be used they
can be added to the compiler search path by appending the $CFLAGS/$CXXFLAGS variable. This
can be done either in the project settings or in the Makefile using:

CFLAGS+= –I<path-to-headerfi le-dir> -L<path-to-l ibrary-dir>

4.2.3. Compiler optimizations
The environment setup script automatically sets the –mcpu=<cpu> compiler flag for optimizing the
code for the instruction set generated for the specific processor. Additionally, floating point
computations are automatically set to use the available hardware acceleration.

To see which optimizations are done by default, study the content of the environment setup script.
All these settings can be overridden after the script has been sourced. See the compiler
documentation for additional information about available optimizer flags.

4.2.4. Special considerations using CCAux API
In order to build applications using functions from the CCAux API library, two steps need to be
given special consideration in either the project file or the Makefile:

1. The $LD variable should be overridden to use the same content as the $CXX variable

2. The $CFLAGS/$CXXFLAGS must be appended with the -DLINUX flag

If either of these steps are omitted, the build will fail. See chapter 6.1 for examples of how to build
CCAux API applications.

4.3. Debugging remotely
To debug system libraries, you must have the sdk-with-debugging installed on your host machine
and use it to build your application.

To use GDB to debug an application running on the device, the application must have been
compiled with the -g flag. Start gdbserver on the device:

~$ gdbserver :10000 testApplication

Then start the host GDB and connect to the server:

$ arm-poky-linux-gnueabi-gdb testApplication

CC Linux Revision: 2.0.1
Programmer’s Guide 2021-05-05

www.crosscontrol.com 16

$ (gdb) target remote Y.Y.Y.Y:10000

Above Y.Y.Y.Y is the IP address of the device. Then issue the set sysroot and set substitute-
path commands. Notice that you’ll have to substitute $SDKTARGETSYSROOT text with
environment variable content of the same name. GDB cannot read that variable.:

$ (gdb) set sysroot $SDKTARGETSYSROOT
$ (gdb) set substitute-path $SDKTARGETSYSROOT/usr/src

You can now debug the application normally, except that instead of issuing the run command one
should use continue since the application is already running on the remote side.

Note that it is possible to fully debug the application but not to make system calls made by the
application. Such system calls include calls to the soft float library, like divide, add or multiply on
floating point variables. It is therefore recommended to use next rather than step when such
system calls are being made.

CC Linux Revision: 2.0.1
Programmer’s Guide 2021-05-05

www.crosscontrol.com 17

5. Special considerations
This section is dedicated to device specific requirements that require extra attention and
consideration when programming.

5.1. Ethernet, setting a static IP-address
There are several ways of setting the IP address of a device. The default method is DHCP, but a
static IP address can also be used. This can be done through the network interfaces configuration
file.

5.1.1. File method for IP address configuration
This method requires knowledge about the interfaces file format, but a sample is given below.

$ sudo nano /etc/systemd/network/eth0.network

Sample of network file setting dynamic IP address:

[Match]
Name=eth0

[Network]
DHCP=ipv4

Sample of network file setting static IP address:

[Match]
Name=eth0
[Network]
Address=192.168.1.20/24
Gateway=192.168.1.1
DNS=192.168.1.1

Once the file has been edited, it is recommended to either reboot the device, or to bring the
network interfaces down and up again, for the IP address configuration to take effect:

$ sudo systemctl restart systemd-networkd

5.2. CAN
In Linux, CAN is interfaced using SocketCAN which is a standard used in the Linux kernel.

Usage of SocketCAN requires knowledge of some system specific settings and details described
herein. For additional SocketCAN information see the official SocketCAN documentation.

5.2.1. Configuration of the device interface
The device node files for the CAN interfaces are can0 … canX for a device with (X+1) CAN
interfaces. The interfaces should be shown when listing all network interfaces with the ifconfig
command.

CC Linux Revision: 2.0.1
Programmer’s Guide 2021-05-05

www.crosscontrol.com 18

The CAN bus itself is not initialized during start-up. Before any communications can be executed,
the user must set correct bus speed (as an example 250kbps) by first writing the value into the
bitrate parameter:

$ sudo ip l ink set can0 type can bitrate 250000

In order to work properly with external CAN devices the sample point of baud rate timings might
need to be configured:

$ sudo ifconfig can0 type can sample-point 0.78

and then setting interface up with ifconfig:

$ sudo ifconfig can0 up

After this, ifconfig should show can0 as a network interface:

$ ifconfig
can0 Link encap:UNSPEC HWaddr 00-00-00-00-00-00
 UP RUNNING NOARP MTU:16 Metric:1
 RX packets:0 errors:0 dropped:0 overruns:0 frame:0
 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
 coll isions:0 txqueuelen:10
 RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)
 Interrupt:31

In CCpilot VS, the device drivers are implemented as loadable kernel modules. The modules are
can_dev.ko and flexcan.ko. Startup scripts handle the loading of the kernel modules upon start-up.
The loaded modules can be checked via terminal access using the lsmod command:

$ lsmod | grep can
flexcan 10092 0
can_dev 8641 1 flexcan,xil inx

Since the drivers are compiled as modules, unnecessary protocols may be removed or new
modules inserted, according to user needs.

5.2.2. CAN-FD
Some devices support CAN with flexible data rate (FD), see the Techical Manual of your device for
more details. The nominal and data baud rates are setup using socketCAN in a similar fashion as
standard CAN (example 250 kbps nominal, 1 Mbps data):

$ sudo ip l ink set can0 type can bitrate 250000 dbitrate 1000000 fd on

In order to work properly with external CAN-FD devices the sample point of baud rate timings might
need to be configured:

$ sudo ip l ink set can0 type can sample-point 0.78 dsample-point 0.8

5.2.3. Configuring the CAN socket transmission buffer
By default, the CAN driver is configured with a transmission buffer that can hold upto 10 CAN
frames. As each frame is sent over the bus, the buffer is cleared. However, it is possible to write
frames to the socket faster than the frames are sent, especially if your messages are low-priority

CC Linux Revision: 2.0.1
Programmer’s Guide 2021-05-05

www.crosscontrol.com 19

frames on a high-traffic bus. If your application needs to send more than 10 CAN frames in bursts,
it might be a good idea to increase the size of the transmission buffer:

$ ifconfig can0 txqueuelen 100

5.2.4. Bus recovery options
It is possible to implement automatic bus recovery after bus off has occurred. State changes are
automatically detected and controller is re-initialized after the specified time period.

Automatic bus recovery from bus off state is by default turned off. It can be turned on using the ip
command, where the wanted restart period in milliseconds is set. For example, a 100 ms restart
period for can0 is set from command line like this:

$ ifconfig can0 down
$ ip l ink set can0 type can restart-ms 100
$ ifconfig can0 up

Same commands apply for all available CAN interfaces by replacing can0 appropriately. The
restart period interval is possible to set as needed by the application. Value zero turns automatic
bus recovery off.

Warning: Enabling automatic bus recovery may disturb other nodes on the bus, if CAN interface is
incorrectly initialized.

5.3. Analog video
For QML applications with analog video, CrossControl recommends using the QtMultimedia
framework rather than CCAux API since the video performance is higher and development process
quicker. For non-QML applications, CCAux API is recommended.

Qt is not part of the default image, but downloadable from the support site as a separate package.
Additionally, you may contact support on how to build Qt with the SDK for the required platform.

5.3.1. Analog Video using QtMultimedia
You may download CC Linux examples such as QML application CCVideo for displaying analog
video using a QtCamera instance, from the support site. This application is for test purposes only,
CrossControl recommends implementing the video functionality into your application for correct
behavior.

QtMultimedia uses the gstreamer backend and the application must export the correct video
source:

setenv("QT_GSTREAMER_CAMERABIN_VIDEOSRC", "imxv4l2videosrc", 1);

5.3.2. Analog Video using CCAux API
There are some design constraints on the usage of analog video and CCAux API that it is
important to highlight, to create a better understanding of what can be done and what is necessary
to do within the applications. Below is a brief description of the video API for developers to consider
when building their application.

The most important CCAux Video API functions are as follows:

CC Linux Revision: 2.0.1
Programmer’s Guide 2021-05-05

www.crosscontrol.com 20

Initialize (will open file handles, setup basic settings and request frame buffers), select deviceNr=1
for input channel 1:

Video_init(VIDEOHANDLE pObj, unsigned char deviceNr)

Select the active channel 1-4, corresponds to the physical port number:

Video_setActiveChannel(VIDEOHANDLE pObj, VideoChannel channel)

Note that CCpilot VS has one analog video channel only. CCpilot VI and CCpilot v700 do not have
any analog video channels.

Set the area of the display where the video will be shown:

Video_setVideoArea(VIDEOHANDLE pObj, unsigned short topLeftX, unsigned
short topLeftY, unsigned short bottomRightX, unsigned short bottomRightY)

Enable or disable (horizontal) mirroring of the video image:

Video_setMirroring(VIDEOHANDLE pObj, CCStatus mode)

Show (or hide) video image:

Video_showVideo(VIDEOHANDLE pObj, bool show)

Further and more detailed API information can be found in the CCAux API documentation.

5.4. Graphics, Qt (without Weston)
For the best graphical performace, it is recommended to use the Qt-framework with KMS support.

With our i.MX8-devices using KMS and the proprietary driver, there is a need for special
configuration to set the plugin to the correct color mode:

First define the correct mode in kms.json.

{
"device": "/dev/dri/card0",
"outputs": [
{ "name": "LVDS1", "mode": "800x480", "size": "800x480", "format":
"abgr8888" }]
}

Then export the necessary configuration parameters:

export QT_QPA_EGLFS_KMS_CONFIG="/path-to-directory-with/kms.json"
export QT_QPA_EGLFS_INTEGRATION=eglfs_kms
export QT_QPA_EGLFS_KMS_ATOMIC=1

And finally launch your application with:

./Application -platform eglfs

CC Linux Revision: 2.0.1
Programmer’s Guide 2021-05-05

www.crosscontrol.com 21

There is also a native Vivante platform available, (though this usage is, at present, discouraged as
the performance is not on par with EGLFS KMS). To use the EGLFS Vivante platform, export the
following configuration:

export QT_QPA_EGLFS_INTEGRATION=eglfs_viv
export QT_QPA_EGLFS_FORCEVSYNC=0
export QT_QPA_EGLFS_FORCE888=1
./application -platform eglfs

5.5. Graphics, Weston
The graphics framework uses the Wayland protocol reference implementation Weston for graphic
operations. Wayland is fast and efficient, and is used by most modern advanced Linux systems,
giving it vast standard support in the Linux user space.

For example, Qt has a plugin that enables the Qt libraries to be built for Weston. For Qt
applications the impact for that means that it simply needs to be started with a specific
flag, -platform wayland-egl, and built with the correct development libraries. In CC Linux, this flag
has been set to the default graphics framework, hence there’s no need to pass the flag.

Weston includes a windowing system, enabling several applications to overlap while in operation.

The Wayland protocol does not, by default, allow its clients (Qt applications etc.) to have any
information about where the client is positioned on the screen. Therefore, some Qt functions, like
QWidget::pos(), will always give a zero return. This issue has been resolved in CC Linux by
adding an extension to wayland, where the window starting coordinates can be given to the
application. Please refer to the Software Guide for more information.

5.6. Serial Number Broadcast interface
The device has a Serial Number Broadcast service (SNB). The SNB does not have a programming
interface at the device end, but the broadcasted data output can be handled elsewhere; including
in another device if required.

The message sent is a multicast UDP datagram to address 224.0.0.27. The message contains a
char array with three values separated by tabs; Serial number, Firmware version and device type.
The sender’s IP address is available in datagram headers.

Example data contents (without quotes):

“PR01<tab>10.0.0<tab>0”

An example implementation of the data listener is available in the BSP: apps/snb/snb_reader.c.

5.7. Polarity of PWM outputs
The PWM outputs can be either high or low sided, which will affect the duty cycle behavior. For
high sided outputs, a duty cycle of 90% will result in the output signal being 90% high and 10% low.
For low sided outputs, the opposite is true - the output signal will be 10% high and 90% low.

Refer to the Technical Manual of your device in order to know if it has PWM outputs and if they are
high or low sided.

CC Linux Revision: 2.0.1
Programmer’s Guide 2021-05-05

www.crosscontrol.com 22

5.8. Suspend
Upon suspend of the device, some peripherals are turned off. These will need to be restarted by
the user application upon resume from suspend. The following peripherals are affected (available
peripherals differ for different devices, see the Technical Manual for your device):

• Buzzer/Speaker

• PWM outputs

• Digital outputs

The CCAux API function PowerMgr_hasResumed() can be called from within the user application
in order to detect a resume from suspend event, see the CCAux API documentation [5].

CC Linux Revision: 2.0.1
Programmer’s Guide 2021-05-05

www.crosscontrol.com 23

6. Build Examples
Source code for the example application included in the CC Linux reference image
(CCSettingsConsole), is provided in the BSP. This can be used as a template or starting points for
your applications.

Example code on how to call the functions provided by CCAux API are found in the CCAux API
documentation and in the examples directory of the CCAux API source code. Additionally, this
chapter provides examples on the build process.

6.1. Building applications with the SDK
This chapter gives two examples on how to build a small example application which uses CCAux
API functions to set the color of the status LED. The first example shows how to build a C++
application using a Makefile. The second example shows how to build a Qt application with qmake
to auto generate the Makefile.

6.1.1. C++ Makefile example
This example shows how to build a C++ application example using a Makefile. The source file
example.cpp is listed below. The file consists of a simple main function calling the status LED
functions.

/**
 * example.cpp
 **/

#include <stdio.h>
#include <FrontLED.h>
#include <CCAuxErrors.h>

using namespace CrossControl;

int main(void)
{
 printf("Setting FrontLED to blue!\r\n");

 FRONTLEDHANDLE pLed = GetFrontLED();

 eErr err;
 err = FrontLED_setStandardColor(pLed, BLUE);

 if(err != ERR_SUCCESS)
 printf("An error occurred!\r\n");

 FrontLED_release(pLed);
 return 0;
}

Following is an example Makefile that is used to build example. The additional -Wall flag enables
all warnings and is recommended. This file can easily be expanded to build more complex
applications.

CC Linux Revision: 2.0.1
Programmer’s Guide 2021-05-05

www.crosscontrol.com 24

Makefi le for example using FrontLed

NOTE: before running make, the SDK environment must be set up by
sourcing the environment f i le

TARGET=example
LD = $(CXX)

CC_OBJS = $(TARGET).o
C_OBJS =

OBJS = $(CC_OBJS) $(C_OBJS)

CXXFLAGS+= -DLINUX -Wall
CFLAGS+= -DLINUX -Wall
LDFLAGS+= -lcc-aux2 -lpthread

CCCMD = $(CC) -c $(CFLAGS)
CXXCMD = $(CXX) -c $(CXXFLAGS)

all: clean
$(TARGET)

$(TARGET): $(OBJS)
 $(LD) -o $@ $(OBJS) $(LDFLAGS)

pattern rules for object f i les
%.o: %.c
 $(CCCMD) $< -o $@

%.o: %.cpp
 $(CXXCMD) $< -o $@

clean:
 rm -rf *.o *.elf *.gdb *~ $(TARGET)

To build example, make sure the environment setup script has been sourced, and then issue the
following command:

$ make example

make will expand the content of the Makefile and the previously sourced environment setup script
to the following output (in this instance for CCpilot VS):

arm-poky-linux-gnueabi-g++ -march=armv7-a -marm -mfpu=neon -mfloat-
abi=hard -mcpu=cortex-a9 --sysroot=/opt/vs-sdk/sysroots/cortexa9hf-neon-
poky-linux-gnueabi -c -O2 -pipe -g -fel iminate-unused-debug-types -DLINUX -
Wall example.cpp -o example.o

CC Linux Revision: 2.0.1
Programmer’s Guide 2021-05-05

www.crosscontrol.com 25

arm-poky-linux-gnueabi-g++ -march=armv7-a -marm -mfpu=neon -mfloat-
abi=hard -mcpu=cortex-a9 --sysroot=/opt/vs-sdk/sysroots/cortexa9hf-neon-
poky-linux-gnueabi -o example example.o -Wl,-O1 -Wl,--hash-style=gnu -Wl,--
as-needed -lcc-aux2 -lpthread

6.1.2. Qt application development
CrossControl provides a pre-configured virtual machine with open-source Qt IDE and development
Qt runtime for all CC Linux-based display computers. For additional information and downloads,
see https://crosscontrol.com/software-solutions/

https://crosscontrol.com/software-solutions/

CC Linux Revision: 2.0.1
Programmer’s Guide 2021-05-05

www.crosscontrol.com 26

7. Working with Systemd
The basics of creating, configuring and starting systemd services are explained in the software
guide. This section provides a more detailed look in to how systemd can be configured in special
cases i.e when applications and services need to be tied to specific devices or other services.

7.1. Creating services with dependencies
Sometimes services can include dependencies to other services and a requirement might be that
these services need to be executed in a specific order. Additionally, services may require a specific
device to be operational before the service can be started.

7.1.1. Example: service that depends on other services
Assume you have a backend.service that provides connectivity and a userapp.service that
provides the user interface. Thus, you want to make sure that the backend is running before the
user application is started.

backend.service:

[Unit]
Description="Our backend that provides data"

[Service]
Type=simple
ExecStart=/usr/bin/launch-backend.sh

[Install]
WantedBy=multi-user.target

user.app.serivce:

[Unit]
Description="User interface to view data"

[Service]
Type=simple
ExecStart=/usr/bin/launch-gui.sh
After=backend.service
Requires=backend.service

[Install]
WantedBy=multi-user.target

Finally, enable the service with systemctl enable user.app.service. This will automatically load the
backend also.

7.1.2. Example: service that depends on a specific device
Assume that your backed provides data from a can-bus, and thus requires the driver to be loaded
before starting the service.

First find out the .device that you want to bind the service to:

CC Linux Revision: 2.0.1
Programmer’s Guide 2021-05-05

www.crosscontrol.com 27

root@v700:~# systemctl --type=device --all|grep can0
sys-subsystem-net-devices-can0.device
loaded active plugged /sys/subsystem/net/devices/can0
root@v700:~#

Then, add the binding to the service that requires the specific interface.

[Unit]
Description="Our backed that provides data from CAN0"

[Service]
Type=simple
ExecStart=/usr/bin/launch-backend.sh
BindsTo=sys-subsystem-net-devices-can0.device
After=sys-subsystem-net-devices-can0.device

Now, your service will be bound to wait after the specific device driver has been loaded.

If you cannot find the device, you will need to add a specific udev-rule, creating a .device node with
system. See 7.3

7.1.3. Service file locations
For systemd to find service files they must be located in predefined locations. These locations can
be checked for each system with the following commands.

For user files:

root@v700:~# systemd-analyze --user unit-paths
…
/home/root/.config/systemd/user.control
/home/root/.config/systemd/user
/etc/systemd/user
…

For system related files:

root@v700:~# systemd-analyze --system unit-paths
…
/etc/systemd/system
/usr/local/l ib/systemd/system
/lib/systemd/system
/usr/l ib/systemd/system
…

7.2. Viewing dependencies with systemctl list-dependencies
Finding out dependencies might become cumbersome at times and systemd provides tools to help
out in this task. It is possible to view dependencies for each service, but also in the reverse.

As an example the System Supervisor runs a specific service on the device on each boot. To see
the dependencies for this, run:

root@v700:~# systemctl l ist-dependencies --all ss.service

CC Linux Revision: 2.0.1
Programmer’s Guide 2021-05-05

www.crosscontrol.com 28

ss.service
● ├─system.slice
● └─sysinit.target
● ├─dev-hugepages.mount
● ├─dev-mqueue.mount
● ├─kmod-static-nodes.service
● ├─ ldconfig.service
● ├─psplash-start.service
● ├─rngd.service
● ├─sys-fs-fuse-connections.mount
● ├─sys-kernel-config.mount
● ├─sys-kernel-debug.mount
● ├─systemd-ask-password-console.path
● ├─systemd-journal-catalog-update.service
● ├─systemd-journal-f lush.service
● ├─systemd-journald.service
● ├─systemd-machine-id-commit.service
● ├─systemd-modules-load.service
● ├─systemd-sysctl.service
● ├─systemd-sysusers.service
● ├─systemd-tmpfiles-setup-dev.service
● ├─systemd-tmpfiles-setup.service
● ├─systemd-udev-trigger.service
● ├─systemd-udevd.service
● ├─systemd-update-done.service
● ├─systemd-update-utmp.service
● ├─ local-fs.target
● │ ├─systemd-remount-fs.service
● │ ├─tmp.mount
● │ ├─var-volati le-cache.service
● │ ├─var-volati le-l ib.service
● │ ├─var-volati le-spool.service
● │ ├─var-volati le-srv.service
● │ └─var-volati le.mount
● └─swap.target

This will provide you with a dependency tree of the service.

To find out what services depend on a specific one, use the -reverse -flag:

root@v700:~# systemctl l ist-dependencies ss.service --all --reverse
ss.service
● ├─ccauxd.service
● │ └─multi-user.target
● │ └─graphical.target
● └─sys-module-ss.device

The reverse depends will help you to see, where a specific service is started if it is not listed in any
of the targets (but is launched as a dependency from another .service).

CC Linux Revision: 2.0.1
Programmer’s Guide 2021-05-05

www.crosscontrol.com 29

7.3. Adding systemd .devices
By default, systemd maps most of the devices (all tagged with “systemd”). However if the device is
not visible you may create a mapping to use. For this example, let’s use the light sensor that is
located on the i2c-bus, but also as a symlink on /dev/lightsensor.

First use udevadm to check the details of the device:

root@v700:~# udevadm info
/sys/devices/platform/bus@5a000000/5a810000.i2c/i2c-16/16-0044
P: /devices/platform/bus@5a000000/5a810000.i2c/i2c-16/16-0044
L: 0
E: DEVPATH=/devices/platform/bus@5a000000/5a810000.i2c/i2c-16/16-0044
E: DRIVER=isl29018
E: OF_NAME=isl29035
E: OF_FULLNAME=/bus@5a000000/i2c@5a810000/isl29035@44
E: OF_COMPATIBLE_0=isil, isl29035
E: OF_COMPATIBLE_N=1
E: MODALIAS=of:Nisl29035T(null)Cisi l, isl29035
E: SUBSYSTEM=i2c
E: USEC_INITIALIZED=4914427

Then, create a rule in udev, to add the tag “systemd” to the device, and also map the /dev/lightsenor
link to make it more useable.

Under /etc/udev/rules.d/lightsensor.rules, add:

SUBSYSTEM=="i2c", KERNELS=="16-0044", TAG="systemd",
ENV{SYSTEMD_ALIAS}="/dev/lightsensor"

Save the file, and reload udev:

udevadm control --reload-rules && udevadm trigger

Device will now be visible as a systemd.device:

root@v700:~# systemctl --type=device --all |grep -e 044 -e l ightsensor
dev-lightsensor.device
loaded active plugged /dev/lightsensor
sys-devices-platform-bus\x405a000000-5a810000.i2c-i2c\x2d16-
16\x2d0044.device loaded active plugged
/sys/devices/platform/bus@5a000000/5a810000.i2c/i2c-16/16-0044

Additionally, you will be able to see the added tags with udevadm:

root@v700:~# udevadm info
/sys/devices/platform/bus@5a000000/5a810000.i2c/i2c-16/16-0044
P: /devices/platform/bus@5a000000/5a810000.i2c/i2c-16/16-0044
L: 0
E: DEVPATH=/devices/platform/bus@5a000000/5a810000.i2c/i2c-16/16-0044
E: DRIVER=isl29018
E: OF_NAME=isl29035
E: OF_FULLNAME=/bus@5a000000/i2c@5a810000/isl29035@44
E: OF_COMPATIBLE_0=isil, isl29035

CC Linux Revision: 2.0.1
Programmer’s Guide 2021-05-05

www.crosscontrol.com 30

E: OF_COMPATIBLE_N=1
E: MODALIAS=of:Nisl29035T(null)Cisi l, isl29035
E: SUBSYSTEM=i2c
E: USEC_INITIALIZED=4914427
E: SYSTEMD_ALIAS=/dev/lightsensor
E: TAGS=:systemd:

7.3.1. Launching services from udev (not recommended)
In some cases it might make sense to launch services directly from udev rules. In this case, just
add the necessary service to the rule.

ENV{SYSTEMD_WANTS}+="lightsensor.service"

This will run the specific service when the device is connected. The pitfall is, that if you have the
service enabled elsewhere, it will be hard to know where it is launched from. Thus, the preferred
way is to run all services from targets.

CC Linux Revision: 2.0.1
Programmer’s Guide 2021-05-05

www.crosscontrol.com 31

Technical support
Additional sources of information are available on the CrossControl support site:
https://crosscontrol.com/support/
You will need to register to the site in order to be able to access all available information

Contact your reseller or supplier for help with possible problems with your device. In order to get
the best help, you should have access to your device and be prepared with the following
information before you contact support.

• The part number and serial number of the device, which you can find on the brand label.

• Date of purchase, which can be found on the invoice.

• The conditions and circumstances under which the problem arises.

• Status indicator patterns (i.e. LED blink pattern).

• Prepare a system report on the device, using CCSettingsConsole (if possible).

• Detailed description of all external equipment connected to the unit (when relevant to the
problem).

https://crosscontrol.com/support/

CC Linux Revision: 2.0.1
Programmer’s Guide 2021-05-05

www.crosscontrol.com 32

Trademarks and terms of use
© 2021 CrossControl

All trademarks sighted in this document are the property of their respective owners.

CCpilot is a trademark which is the property of CrossControl.

The registered trademark Linux® is used pursuant to a sublicense from the Linux Foundation, the
exclusive licensee of Linus Torvalds, owner of the mark on a world-wide basis.

CC Linux is an officical Linux distributuition pursuant to the terms of the Linux Sublicense
Agreement

Microsoft® and Windows® are registered trademarks which belong to Microsoft Corporation in the
USA and/or other countries.

Arm® is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere.

Qt is a registered trademark of The Qt Company Ltd. and its subsidiaries.

CrossControl is not responsible for editing errors, technical errors or for material which has been
omitted in this document. CrossControl is not responsible for unintentional damage or for damage
which occurs as a result of supplying, handling or using of this material including the devices and
software referred to herein. The information in this handbook is supplied without any guarantees
and can change without prior notification.

For CrossControl licensed software, CrossControl grants you a license, to under CrossControl’s
intellectual property rights, to use, reproduce, distribute, market and sell the software, only as a
part of or integrated within, the devices for which this documentation concerns. Any other usage,
such as, but not limited to, reproduction, distribution, marketing, sales and reverse engineering of
this documentation, licensed software source code or any other affiliated material may not be
performed without the written consent of CrossControl.

CrossControl respects the intellectual property of others, and we ask our users to do the same.
Where software based on CrossControl software or products is distributed, the software may only
be distributed in accordance with the terms and conditions provided by the reproduced licensors.

For end-user license agreements (EULAs), copyright notices, conditions, and disclaimers,
regarding certain third-party components used in the device, refer to the copyright notices
documentation.

	1. Introduction
	1.1. Convention and defines
	1.2. References

	2. Interfaces
	2.1. Standard libraries
	2.2. CCAux library
	2.3. CCAux API calling convention
	2.4. Telematics API

	3. Board Support Package
	3.1. Downloading and installing the BSP
	3.2. BSP structure
	3.2.1. apps
	3.2.2. drivers
	3.2.3. meta-3rd-party
	3.2.4. meta-cc
	3.2.5. meta-freescale-append
	3.2.6. meta-freescale-distro-append
	3.2.7. meta-imx-append
	3.2.8. meta-openembedded-append
	3.2.9. meta-intel-append
	3.2.10. Poky-append
	3.2.11. platform
	3.2.12. tools
	3.2.13. uuu-package
	3.2.14. binaries

	3.3. Using the BSP
	3.3.1. Building Linux images
	3.3.2. Building applications

	4. Software Development Kit
	4.1. Downloading and installing the SDK
	4.2. Using the SDK
	4.2.1. Starting a new session
	4.2.2. Using correct development headers
	4.2.3. Compiler optimizations
	4.2.4. Special considerations using CCAux API

	4.3. Debugging remotely

	5. Special considerations
	5.1. Ethernet, setting a static IP-address
	5.1.1. File method for IP address configuration

	5.2. CAN
	5.2.1. Configuration of the device interface
	5.2.2. CAN-FD
	5.2.3. Configuring the CAN socket transmission buffer
	5.2.4. Bus recovery options

	5.3. Analog video
	5.3.1. Analog Video using QtMultimedia
	5.3.2. Analog Video using CCAux API

	5.4. Graphics, Qt (without Weston)
	5.5. Graphics, Weston
	5.6. Serial Number Broadcast interface
	5.7. Polarity of PWM outputs
	5.8. Suspend

	6. Build Examples
	6.1. Building applications with the SDK
	6.1.1. C++ Makefile example
	6.1.2. Qt application development

	7. Working with Systemd
	7.1. Creating services with dependencies
	7.1.1. Example: service that depends on other services
	7.1.2. Example: service that depends on a specific device
	7.1.3. Service file locations

	7.2. Viewing dependencies with systemctl list-dependencies
	7.3. Adding systemd .devices
	7.3.1. Launching services from udev (not recommended)

	Technical support
	Trademarks and terms of use

